regisd_enum¶
- class cryptographic_estimators.RegSDEstimator.RegSDAlgorithms.regisd_enum.RegularISDEnum(problem: RegSDProblem, **kwargs)¶
Bases:
RegSDAlgorithm
Construct an instance of RegularISD-Enum estimator from [ES23].
- Parameters:
problem (RegSDProblem) – An instance of the RegSDProblem class
Examples
>>> from cryptographic_estimators.RegSDEstimator.RegSDAlgorithms import RegularISDEnum >>> from cryptographic_estimators.RegSDEstimator import RegSDProblem >>> A = RegularISDEnum(RegSDProblem(n=100,k=50,w=10)) >>> A RegularISD-Enum estimator for the RegSDProblem with parameters (n, k, w) = (100, 50, 10)
- property attack_type¶
Returns the attack type of the algorithm.
- property complexity_type¶
Returns the attribute _complexity_type.
- ell()¶
Return the optimal parameter p used in the algorithm optimization.
Examples
>>> from cryptographic_estimators.RegSDEstimator.RegSDAlgorithms import RegularISDEnum >>> from cryptographic_estimators.RegSDEstimator import RegSDProblem >>> A = RegularISDEnum(RegSDProblem(n=100,k=50,w=10)) >>> A.ell() 4
- get_optimal_parameters_dict()¶
Returns the optimal parameters dictionary.
- has_optimal_parameter()¶
Return True if the algorithm has optimal parameter.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).has_optimal_parameter() False
- property memory_access¶
Returns the attribute _memory_access.
- memory_access_cost(mem: float)¶
Returns the memory access cost (in logarithmic scale) of the algorithm per basic operation.
- Parameters:
mem (float) – Memory consumption of an algorithm.
- Returns:
Memory access cost in logarithmic scale.
- Return type:
float
Note
memory_access: Specifies the memory access cost model (default: 0, choices: 0 - constant, 1 - logarithmic, 2 - square-root, 3 - cube-root or deploy custom function which takes as input the logarithm of the total memory usage)
- memory_complexity(**kwargs)¶
Return the memory complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.
- optimal_parameters()¶
Return a dictionary of optimal parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).optimal_parameters() {}
- p()¶
Return the optimal parameter p used in the algorithm optimization.
Examples
>>> from cryptographic_estimators.RegSDEstimator.RegSDAlgorithms import RegularISDEnum >>> from cryptographic_estimators.RegSDEstimator import RegSDProblem >>> A = RegularISDEnum(RegSDProblem(n=100,k=50,w=10)) >>> A.p() 4
- parameter_names()¶
Return the list with the names of the algorithm’s parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).parameter_names() []
- property parameter_ranges¶
Returns the set ranges for optimal parameter search.
Returns the set ranges in which optimal parameters are searched by the optimization algorithm (used only for complexity type estimate).
- reset()¶
Resets internal state of the algorithm.
- set_parameter_ranges(parameter: str, min_value: float, max_value: float)¶
Set range of specific parameter.
If optimal parameter is already set, it must fall in that range.
- Parameters:
parameter (str) – Name of parameter to set
min_value (float) – Lowerbound for parameter (inclusive)
max_value (float) – Upperbound for parameter (inclusive)
- set_parameters(parameters: dict)¶
Set optimal parameters to predifined values.
- Parameters:
parameters (dict) – Dictionary including parameters to set (for a subset of optimal_parameters functions)
- time_complexity(**kwargs)¶
Return the time complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.