claw_finding¶
- class cryptographic_estimators.MAYOEstimator.MAYOAlgorithms.claw_finding.ClawFinding(problem: MAYOProblem, **kwargs)¶
Bases:
MAYOAlgorithm
Construct an instance of ClawFinding estimator.
Claw finding attack is a general attack which works against any signature which follows the hash-and-sign paradigm.
- Parameters:
problem (MAYOProblem) – MAYOProblem object including all necessary parameters
**kwargs –
Additional keyword arguments
w - Linear algebra constant (default: obtained from MAYOAlgorithm)
h - External hybridization parameter (default: 0)
excluded_algorithms - A list/tuple of MQ algorithms to be excluded (default: [Lokshtanov])
memory_access - Specifies the memory access cost model (default: 0, choices: 0 - constant, 1 - logarithmic, 2 - square-root, 3 - cube-root or deploy custom function which takes as input the logarithm of the total memory usage)
complexity_type - Complexity type to consider (0: estimate, default: 0)
bit_complexities - Determines if complexity is given in bit operations or basic operations (default 1: in bit)
hash_bit_size - Hash function output size given in bits (default: 512)
- X()¶
Return logarithm of the optimal X, i.e. number of inputs (preimages).
Optimal value for X is obtained from optimizing the bit-cost expression of the attack reported in MAYO specification (see Section 5.4 in [BCCHK23]) 36 * m * X + Y * 2 ** 17 using X * Y = q ** m
Examples
>>> from cryptographic_estimators.MAYOEstimator.mayo_problem import MAYOProblem >>> from cryptographic_estimators.MAYOEstimator.MAYOAlgorithms.claw_finding import ClawFinding >>> E = ClawFinding(MAYOProblem(n=80, m=60, o=18, k=12, q=16)) >>> E.X() 122.962
- Y()¶
Return logarithm of the optimal Y.
Return logarithm of the number of hashes to compute. Optimal value for Y is obtained from X * Y = q ** m using the optimal value of X.
Examples
>>> from cryptographic_estimators.MAYOEstimator.mayo_problem import MAYOProblem >>> from cryptographic_estimators.MAYOEstimator.MAYOAlgorithms.claw_finding import ClawFinding >>> E = ClawFinding(MAYOProblem(n=80, m=60, o=18, k=12, q=16)) >>> E.Y() 117.038
- property attack_type¶
Returns the attack type of the algorithm.
- property complexity_type¶
Returns the attribute _complexity_type.
- get_optimal_parameters_dict()¶
Returns the optimal parameters dictionary.
- has_optimal_parameter()¶
Return True if the algorithm has optimal parameter.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).has_optimal_parameter() False
- linear_algebra_constant()¶
Return the linear algebra constant.
- Tests:
>>> from cryptographic_estimators.MAYOEstimator.mayo_algorithm import MAYOAlgorithm >>> from cryptographic_estimators.MAYOEstimator.mayo_problem import MAYOProblem >>> E = MAYOAlgorithm(MAYOProblem(n=66, m=64, o=8, k=9, q=16)) >>> E.linear_algebra_constant() 2.81
- property memory_access¶
Returns the attribute _memory_access.
- memory_access_cost(mem: float)¶
Returns the memory access cost (in logarithmic scale) of the algorithm per basic operation.
- Parameters:
mem (float) – Memory consumption of an algorithm.
- Returns:
Memory access cost in logarithmic scale.
- Return type:
float
Note
memory_access: Specifies the memory access cost model (default: 0, choices: 0 - constant, 1 - logarithmic, 2 - square-root, 3 - cube-root or deploy custom function which takes as input the logarithm of the total memory usage)
- memory_complexity(**kwargs)¶
Return the memory complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.
- optimal_parameters()¶
Return a dictionary of optimal parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).optimal_parameters() {}
- parameter_names()¶
Return the list with the names of the algorithm’s parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).parameter_names() []
- property parameter_ranges¶
Returns the set ranges for optimal parameter search.
Returns the set ranges in which optimal parameters are searched by the optimization algorithm (used only for complexity type estimate).
- reset()¶
Resets internal state of the algorithm.
- set_parameter_ranges(parameter: str, min_value: float, max_value: float)¶
Set range of specific parameter.
If optimal parameter is already set, it must fall in that range.
- Parameters:
parameter (str) – Name of parameter to set
min_value (float) – Lowerbound for parameter (inclusive)
max_value (float) – Upperbound for parameter (inclusive)
- set_parameters(parameters: dict)¶
Set optimal parameters to predifined values.
- Parameters:
parameters (dict) – Dictionary including parameters to set (for a subset of optimal_parameters functions)
- time_complexity(**kwargs)¶
Return the time complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.