f5¶
- class cryptographic_estimators.MQEstimator.MQAlgorithms.f5.F5(problem: MQProblem, **kwargs)¶
Bases:
MQAlgorithm
Construct an instance of the F5 complexity estimator.
Note
The complexity formula is taken from Proposition 1 in [BFP09].
- Parameters:
problem (MQProblem) – The MQProblem object including all necessary parameters.
h (int, optional) – The external hybridization parameter. Defaults to 0.
w (float, optional) – The linear algebra constant. Defaults to 2.81.
degrees (list, tuple, optional) – A list or tuple of the degrees of the polynomials. Defaults to [2] * m.
Examples
>>> from cryptographic_estimators.MQEstimator.MQAlgorithms.f5 import F5 >>> from cryptographic_estimators.MQEstimator.mq_problem import MQProblem >>> E = F5(MQProblem(n=10, m=5, q=3)) >>> E F5 estimator for the MQ problem with 10 variables and 5 polynomials
- property attack_type¶
Returns the attack type of the algorithm.
- property complexity_type¶
Returns the attribute _complexity_type.
- degree_of_polynomials()¶
Return a list of degree of the polynomials.
Examples
>>> from cryptographic_estimators.MQEstimator.MQAlgorithms.f5 import F5 >>> from cryptographic_estimators.MQEstimator.mq_problem import MQProblem >>> E = F5(MQProblem(n=10, m=5, q=3)) >>> E.degree_of_polynomials() [2, 2, 2, 2]
- get_optimal_parameters_dict()¶
Returns the optimal parameters dictionary.
- get_reduced_parameters()¶
- has_optimal_parameter()¶
Return True if the algorithm has optimal parameter.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).has_optimal_parameter() False
- linear_algebra_constant()¶
Returns the linear algebra constant.
- Tests:
>>> from cryptographic_estimators.MQEstimator.mq_algorithm import MQAlgorithm >>> from cryptographic_estimators.MQEstimator.mq_problem import MQProblem >>> MQAlgorithm(MQProblem(n=10, m=5, q=4), w=2).linear_algebra_constant() 2
- property memory_access¶
Returns the attribute _memory_access.
- memory_access_cost(mem: float)¶
Returns the memory access cost (in logarithmic scale) of the algorithm per basic operation.
- Parameters:
mem (float) – Memory consumption of an algorithm.
- Returns:
Memory access cost in logarithmic scale.
- Return type:
float
Note
memory_access: Specifies the memory access cost model (default: 0, choices: 0 - constant, 1 - logarithmic, 2 - square-root, 3 - cube-root or deploy custom function which takes as input the logarithm of the total memory usage)
- memory_complexity(**kwargs)¶
Return the memory complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.
- npolynomials_reduced()¶
Return the number of polynomials after applying the Thomae and Wolf strategy.
- Returns:
The number of polynomials after applying the Thomae and Wolf strategy.
- Return type:
int
- Tests:
>>> from cryptographic_estimators.MQEstimator.mq_algorithm import MQAlgorithm >>> from cryptographic_estimators.MQEstimator.mq_problem import MQProblem >>> MQAlgorithm(MQProblem(n=5, m=10, q=2)).npolynomials_reduced() 10 >>> MQAlgorithm(MQProblem(n=60, m=20, q=2)).npolynomials_reduced() 18
- nvariables_reduced()¶
Return the number of variables after fixing some values.
- Tests:
>>> from cryptographic_estimators.MQEstimator.mq_algorithm import MQAlgorithm >>> from cryptographic_estimators.MQEstimator.mq_problem import MQProblem >>> MQAlgorithm(MQProblem(n=5, m=10, q=2)).nvariables_reduced() 5 >>> MQAlgorithm(MQProblem(n=25, m=20, q=2)).nvariables_reduced() 20
- optimal_parameters()¶
Return a dictionary of optimal parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).optimal_parameters() {}
- parameter_names()¶
Return the list with the names of the algorithm’s parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).parameter_names() []
- property parameter_ranges¶
Returns the set ranges for optimal parameter search.
Returns the set ranges in which optimal parameters are searched by the optimization algorithm (used only for complexity type estimate).
- reset()¶
Resets internal state of the algorithm.
- set_parameter_ranges(parameter: str, min_value: float, max_value: float)¶
Set range of specific parameter.
If optimal parameter is already set, it must fall in that range.
- Parameters:
parameter (str) – Name of parameter to set
min_value (float) – Lowerbound for parameter (inclusive)
max_value (float) – Upperbound for parameter (inclusive)
- set_parameters(parameters: dict)¶
Set optimal parameters to predifined values.
- Parameters:
parameters (dict) – Dictionary including parameters to set (for a subset of optimal_parameters functions)
- time_complexity(**kwargs)¶
Return the time complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.