intersection_attack¶
- class cryptographic_estimators.MAYOEstimator.MAYOAlgorithms.intersection_attack.IntersectionAttack(problem: MAYOProblem, **kwargs)¶
Bases:
MAYOAlgorithm
Construct an instance of IntersectionAttack estimator.
The intersection attack [Beu20] generalizes the ideas behind the Kipnis-Shamir attack, in combination with a system-solving approach such as in the reconciliation attack.
- Parameters:
problem (MAYOProblem) – MAYOProblem object including all necessary parameters
w – Linear algebra constant (default: Obtained from MAYOAlgorithm)
h – External hybridization parameter (default: 0)
excluded_algorithms – A list/tuple of MQ algorithms to be excluded (default: [Lokshtanov])
memory_access – Specifies the memory access cost model (default: 0, choices: 0 - constant, 1 - logarithmic, 2 - square-root, 3 - cube-root or deploy custom function which takes as input the logarithm of the total memory usage)
complexity_type – Complexity type to consider (0: estimate, default: 0)
bit_complexities – Determines if complexity is given in bit operations or basic operations (default 1: in bit)
- property attack_type¶
Returns the attack type of the algorithm.
- property complexity_type¶
Returns the attribute _complexity_type.
- get_optimal_parameters_dict()¶
Returns the optimal parameters dictionary.
- has_optimal_parameter()¶
Return True if the algorithm has optimal parameter.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).has_optimal_parameter() False
- linear_algebra_constant()¶
Return the linear algebra constant.
- Tests:
>>> from cryptographic_estimators.MAYOEstimator.mayo_algorithm import MAYOAlgorithm >>> from cryptographic_estimators.MAYOEstimator.mayo_problem import MAYOProblem >>> E = MAYOAlgorithm(MAYOProblem(n=66, m=64, o=8, k=9, q=16)) >>> E.linear_algebra_constant() 2.81
- property memory_access¶
Returns the attribute _memory_access.
- memory_access_cost(mem: float)¶
Returns the memory access cost (in logarithmic scale) of the algorithm per basic operation.
- Parameters:
mem (float) – Memory consumption of an algorithm.
- Returns:
Memory access cost in logarithmic scale.
- Return type:
float
Note
memory_access: Specifies the memory access cost model (default: 0, choices: 0 - constant, 1 - logarithmic, 2 - square-root, 3 - cube-root or deploy custom function which takes as input the logarithm of the total memory usage)
- memory_complexity(**kwargs)¶
Return the memory complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.
- optimal_parameters()¶
Return a dictionary of optimal parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).optimal_parameters() {}
- parameter_names()¶
Return the list with the names of the algorithm’s parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).parameter_names() []
- property parameter_ranges¶
Returns the set ranges for optimal parameter search.
Returns the set ranges in which optimal parameters are searched by the optimization algorithm (used only for complexity type estimate).
- reset()¶
Resets internal state of the algorithm.
- set_parameter_ranges(parameter: str, min_value: float, max_value: float)¶
Set range of specific parameter.
If optimal parameter is already set, it must fall in that range.
- Parameters:
parameter (str) – Name of parameter to set
min_value (float) – Lowerbound for parameter (inclusive)
max_value (float) – Upperbound for parameter (inclusive)
- set_parameters(parameters: dict)¶
Set optimal parameters to predifined values.
- Parameters:
parameters (dict) – Dictionary including parameters to set (for a subset of optimal_parameters functions)
- time_complexity(**kwargs)¶
Return the time complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.