bruteforce¶
- class cryptographic_estimators.MREstimator.MRAlgorithms.bruteforce.BruteForce(problem: MRProblem, **kwargs)¶
Bases:
MRAlgorithm
Construct an instance of BruteForce estimator.
- Parameters:
problem (MRProblem) – An instance of the MRProblem class.
**kwargs –
Additional keyword arguments.
w (int) - Linear algebra constant (default: 3).
theta (int) - Exponent of the conversion factor (default: 2).
Examples
>>> from cryptographic_estimators.MREstimator.MRAlgorithms.bruteforce import BruteForce >>> from cryptographic_estimators.MREstimator.mr_problem import MRProblem >>> E = BruteForce(MRProblem(q=7, m=9, n=10, k=15, r=4)) >>> E BruteForce estimator for the MinRank problem with (q, m, n, k, r) = (7, 9, 10, 15, 4)
- a()¶
Return the optimal a, i.e. no. of vectors to guess in the kernel of the low-rank matrix.
Examples
>>> from cryptographic_estimators.MREstimator.MRAlgorithms.bruteforce import BruteForce >>> from cryptographic_estimators.MREstimator.mr_problem import MRProblem >>> BFE = BruteForce(MRProblem(q=7, m=9, n=10, k=15, r=4)) >>> BFE.a() 1
- Tests:
>>> from cryptographic_estimators.MREstimator.MRAlgorithms.bruteforce import BruteForce >>> from cryptographic_estimators.MREstimator.mr_problem import MRProblem >>> BFE = BruteForce(MRProblem(q=16, m=15, n=15, k=78, r=6)) >>> BFE.a() 5
- property attack_type¶
Returns the attack type of the algorithm.
- property complexity_type¶
Returns the attribute _complexity_type.
- cost_reduction(a, lv)¶
Return the cost of computing the reduced instance.
The reduced instance is obtained after one guess of a kernel vectors.
- Parameters:
a – Number of vectors to guess in the kernel of the low-rank matrix
- get_optimal_parameters_dict()¶
Returns the optimal parameters dictionary.
- get_problem_parameters_reduced(a, lv)¶
Return the problem parameters of the reduced instance.
Returns the problem parameters after guessing a kernel vectors and lv entries in the solution vector.
Args: -
a
– no. of vectors to guess in the kernel of the low-rank matrix -lv
– no. of entries to guess in the solution vector
- has_optimal_parameter()¶
Return True if the algorithm has optimal parameter.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).has_optimal_parameter() False
- hybridization_factor(a, lv)¶
Return the logarithm of the number of reduced instances to be solved.
- Parameters:
a – No. of vectors to guess in the kernel of the low-rank matrix.
lv – No. of entries to guess in the solution vector.
- linear_algebra_constant()¶
Return the linear algebra constant.
- Tests:
>>> from cryptographic_estimators.MREstimator.mr_algorithm import MRAlgorithm >>> from cryptographic_estimators.MREstimator.mr_problem import MRProblem >>> MRAlgorithm(MRProblem(q=7, m=9, n=10, k=15, r=4), w=2).linear_algebra_constant() 2
- lv()¶
Return the optimal lv, i.e. number of entries to guess in the solution.
Examples
>>> from cryptographic_estimators.MREstimator.MRAlgorithms.bruteforce import BruteForce >>> from cryptographic_estimators.MREstimator.mr_problem import MRProblem >>> BFE = BruteForce(MRProblem(q=7, m=9, n=10, k=15, r=4)) >>> BFE.lv() 0
- Tests:
>>> from cryptographic_estimators.MREstimator.MRAlgorithms.bruteforce import BruteForce >>> from cryptographic_estimators.MREstimator.mr_problem import MRProblem >>> BFE = BruteForce(MRProblem(q=16, m=15, n=15, k=78, r=6)) >>> BFE.lv() 0
- property memory_access¶
Returns the attribute _memory_access.
- memory_access_cost(mem: float)¶
Returns the memory access cost (in logarithmic scale) of the algorithm per basic operation.
- Parameters:
mem (float) – Memory consumption of an algorithm.
- Returns:
Memory access cost in logarithmic scale.
- Return type:
float
Note
memory_access: Specifies the memory access cost model (default: 0, choices: 0 - constant, 1 - logarithmic, 2 - square-root, 3 - cube-root or deploy custom function which takes as input the logarithm of the total memory usage)
- memory_complexity(**kwargs)¶
Return the memory complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.
- optimal_parameters()¶
Return a dictionary of optimal parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).optimal_parameters() {}
- parameter_names()¶
Return the list with the names of the algorithm’s parameters.
- Tests:
>>> from cryptographic_estimators import BaseAlgorithm, BaseProblem >>> BaseAlgorithm(BaseProblem()).parameter_names() []
- property parameter_ranges¶
Returns the set ranges for optimal parameter search.
Returns the set ranges in which optimal parameters are searched by the optimization algorithm (used only for complexity type estimate).
- reset()¶
Resets internal state of the algorithm.
- set_parameter_ranges(parameter: str, min_value: float, max_value: float)¶
Set range of specific parameter.
If optimal parameter is already set, it must fall in that range.
- Parameters:
parameter (str) – Name of parameter to set
min_value (float) – Lowerbound for parameter (inclusive)
max_value (float) – Upperbound for parameter (inclusive)
- set_parameters(parameters: dict)¶
Set optimal parameters to predifined values.
- Parameters:
parameters (dict) – Dictionary including parameters to set (for a subset of optimal_parameters functions)
- time_complexity(**kwargs)¶
Return the time complexity of the algorithm.
- Parameters:
**kwargs –
Arbitrary keyword arguments.
optimal_parameters - If for each optimal parameter of the algorithm a value is provided, the computation is done based on those parameters.