Let us walk on the 3-isogeny graph
Loading...
Searching...
No Matches
to_model.m File Reference

Go to the source code of this file.

Functions

f x MonomialCoefficient (f, y)
g x *y Denominator (g)
id E: (id nwhere)
 assert (var1 eq var2)
id c6 ()
id Ẽ: (id nwhere)
 assert (_num/_den eq num_/den_)

Variables

 clear
Pt< t > __pad0__
Ri< i__pad1__
Ra< A > __pad2__
RxPyP< xP, yP__pad3__
RxPyP< xP, yPRxy< x, y >
RxPyP< xP, yP > print nBaseline curve model
RxPyP< xP, yP > print nBaseline curve F
__pad4__
__pad5__
a
__pad6__
a1
a3 __pad7__
printf a3
function j_invariant(a1, a3, a2, a4, a6) b2 b4
b6 __pad8__
b8 __pad9__
Disc __pad10__
c4 __pad11__
c6 __pad12__
var1 __pad13__
var2 __pad14__
return c4
end function
 _num
_den __pad15__
_den num_
_den den_
_den a3yP
printf nã1
printf ã3

Function Documentation

◆ Ẽ:()

id Ẽ: ( id nwhere)
virtual

◆ assert() [1/2]

assert ( _num/_den eq num_/ den_)

References _num, den_, and num_.

◆ assert() [2/2]

assert ( var1 eq var2)

◆ c6()

id c6 ( )
virtual

◆ Denominator()

g x *y Denominator ( g )

◆ E:()

id E: ( id nwhere)
virtual

References a1.

◆ MonomialCoefficient()

f x MonomialCoefficient ( f ,
y  )

Variable Documentation

◆ ã3

printf ã3

Definition at line 45 of file to_model.m.

◆ __pad0__

Pt<t> __pad0__

Definition at line 1 of file to_model.m.

◆ __pad10__

Disc __pad10__

Definition at line 27 of file to_model.m.

◆ __pad11__

c4 __pad11__

Definition at line 29 of file to_model.m.

◆ __pad12__

c6 __pad12__

Definition at line 30 of file to_model.m.

◆ __pad13__

var1 __pad13__

Definition at line 32 of file to_model.m.

◆ __pad14__

var2 __pad14__

Definition at line 33 of file to_model.m.

◆ __pad15__

_den __pad15__

Definition at line 40 of file to_model.m.

◆ __pad1__

Ri<i> __pad1__

Definition at line 1 of file to_model.m.

◆ __pad2__

Ra<A> __pad2__

Definition at line 1 of file to_model.m.

◆ __pad3__

RxPyP<xP, yP> __pad3__

Definition at line 1 of file to_model.m.

◆ __pad4__

h __pad4__

Definition at line 10 of file to_model.m.

◆ __pad5__

f __pad5__

Definition at line 11 of file to_model.m.

◆ __pad6__

g __pad6__

Definition at line 13 of file to_model.m.

◆ __pad7__

a3 __pad7__

Definition at line 16 of file to_model.m.

◆ __pad8__

b6 __pad8__

Definition at line 25 of file to_model.m.

◆ __pad9__

b8 __pad9__

Definition at line 26 of file to_model.m.

◆ _num

_num

Definition at line 40 of file to_model.m.

Referenced by assert().

◆ a

◆ a1

printf a1

◆ a3

_den a3

Definition at line 20 of file to_model.m.

◆ b4

function j_invariant (a1, a3, a2, a4, a6) b2 b4

Definition at line 24 of file to_model.m.

◆ c4

return c4

Definition at line 36 of file to_model.m.

◆ clear

clear

Definition at line 1 of file to_model.m.

◆ den_

_den den_

Definition at line 41 of file to_model.m.

Referenced by assert().

◆ F

RxPyP<xP, yP> print nBaseline curve F

Definition at line 8 of file to_model.m.

◆ function

end function

Definition at line 37 of file to_model.m.

◆ model

RxPyP<xP, yP> print nBaseline curve model

Definition at line 8 of file to_model.m.

◆ nã1

printf nã1

Definition at line 44 of file to_model.m.

◆ num_

_den num_

Definition at line 41 of file to_model.m.

Referenced by assert().

◆ Rxy< x, y >

RxPyP<xP, yP> Rxy< x, y >

Definition at line 1 of file to_model.m.

◆ yP

printf a3 * yP

Definition at line 41 of file to_model.m.