Let us walk on the 3-isogeny graph
|
Go to the source code of this file.
Functions | |
f x | MonomialCoefficient (f, y) |
g x *y | Denominator (g) |
id | E: (id nwhere) |
assert (var1 eq var2) | |
id | c6 () |
id | Ẽ: (id nwhere) |
assert (_num/_den eq num_/den_) |
Variables | |
clear | |
Pt< t > | __pad0__ |
Ri< i > | __pad1__ |
Ra< A > | __pad2__ |
RxPyP< xP, yP > | __pad3__ |
RxPyP< xP, yP > | Rxy< x, y > |
RxPyP< xP, yP > print nBaseline curve | model |
RxPyP< xP, yP > print nBaseline curve | F |
h | __pad4__ |
f | __pad5__ |
f | a |
g | __pad6__ |
g | a1 |
a3 | __pad7__ |
printf | a3 |
function j_invariant(a1, a3, a2, a4, a6) b2 | b4 |
b6 | __pad8__ |
b8 | __pad9__ |
Disc | __pad10__ |
c4 | __pad11__ |
c6 | __pad12__ |
var1 | __pad13__ |
var2 | __pad14__ |
return | c4 |
end | function |
_num | |
_den | __pad15__ |
_den | num_ |
_den | den_ |
_den a3 * | yP |
printf | nã1 |
printf | ã3 |
|
virtual |
assert | ( | var1 eq | var2 | ) |
|
virtual |
g x *y Denominator | ( | g | ) |
|
virtual |
References a1.
f x MonomialCoefficient | ( | f | , |
y | ) |
printf ã3 |
Definition at line 45 of file to_model.m.
Pt<t> __pad0__ |
Definition at line 1 of file to_model.m.
Disc __pad10__ |
Definition at line 27 of file to_model.m.
c4 __pad11__ |
Definition at line 29 of file to_model.m.
c6 __pad12__ |
Definition at line 30 of file to_model.m.
var1 __pad13__ |
Definition at line 32 of file to_model.m.
var2 __pad14__ |
Definition at line 33 of file to_model.m.
_den __pad15__ |
Definition at line 40 of file to_model.m.
Ri<i> __pad1__ |
Definition at line 1 of file to_model.m.
Ra<A> __pad2__ |
Definition at line 1 of file to_model.m.
RxPyP<xP, yP> __pad3__ |
Definition at line 1 of file to_model.m.
h __pad4__ |
Definition at line 10 of file to_model.m.
f __pad5__ |
Definition at line 11 of file to_model.m.
g __pad6__ |
Definition at line 13 of file to_model.m.
a3 __pad7__ |
Definition at line 16 of file to_model.m.
b6 __pad8__ |
Definition at line 25 of file to_model.m.
b8 __pad9__ |
Definition at line 26 of file to_model.m.
_num |
Definition at line 40 of file to_model.m.
Referenced by assert().
f a |
Definition at line 12 of file to_model.m.
Referenced by fp2_test(), fp_add(), fp_add_s(), fp_cmov(), fp_copy(), fp_dec(), fp_enc(), fp_issquare(), fp_mont_redc(), fp_mont_redc_a(), fp_mul(), fp_pow(), fp_sqr(), fp_squaring(), fp_sub(), fp_sub_s(), fulltorsion_points(), get_full_point(), isogeny_walks_3(), main(), main(), poly_mul(), poly_mul_high(), poly_mul_low(), poly_mul_mid(), poly_mul_selfreciprocal(), swap(), and xADD().
printf a1 |
Definition at line 15 of file to_model.m.
Referenced by cgl_hash_digest_3(), E:(), int32_sort(), isogeny_walks_3(), poly_mul_low(), and poly_mul_selfreciprocal().
_den a3 |
Definition at line 20 of file to_model.m.
Definition at line 24 of file to_model.m.
return c4 |
Definition at line 36 of file to_model.m.
clear |
Definition at line 1 of file to_model.m.
_den den_ |
Definition at line 41 of file to_model.m.
Referenced by assert().
RxPyP<xP, yP> print nBaseline curve F |
Definition at line 8 of file to_model.m.
end function |
Definition at line 37 of file to_model.m.
RxPyP<xP, yP> print nBaseline curve model |
Definition at line 8 of file to_model.m.
printf nã1 |
Definition at line 44 of file to_model.m.
_den num_ |
Definition at line 41 of file to_model.m.
Referenced by assert().
RxPyP<xP, yP> Rxy< x, y > |
Definition at line 1 of file to_model.m.
printf a3 * yP |
Definition at line 41 of file to_model.m.