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Repository Overview (1/4)

▶ Let us walk on the 3-isogeny graph: efficient, fast, and simple
is an open-source C framework for using 3-radical isogenies to
improve some post-quantum cryptosystems (dCTIDH +
QFESTA).

▶ This presentation summarizes the software structure and
reproducibility workflow.



Repository Overview (2/4)

▶ Hosted on GitHub: https:
//github.com/Crypto-TII/pqc-engineering-ssec-23

▶ Modular design with components: Presentation Video, System
Requirements, Build, Test, Benchmarks, Docs, Manuscript
results replication, and CI/CD Pipeline.

https://github.com/Crypto-TII/pqc-engineering-ssec-23
https://github.com/Crypto-TII/pqc-engineering-ssec-23


Repository Overview (3/4)

Overview of our paper - YouTube video:
https://www.youtube.com/watch?v=BjedMooSV30&list=

PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q

Figure 1: Overview of our paper - YouTube video.

https://www.youtube.com/watch?v=BjedMooSV30&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q
https://www.youtube.com/watch?v=BjedMooSV30&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q


Repository Overview (4/4)

(Full) Guided Tour of our Artifact:
https://www.youtube.com/watch?v=hLk_B5NpKRA&list=

PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10

Figure 2: (Full) Guided Tour - YouTube video.

https://www.youtube.com/watch?v=hLk_B5NpKRA&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10
https://www.youtube.com/watch?v=hLk_B5NpKRA&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10


System Requirements

Our system requirements are extremely simple:

1. Out-of-the-box Linux (CPU Intel x86 64).

2. CMake + gcc

3. Python3:
▶ Numpy
▶ Matplotlib



How to Install?

Clone from GitHub.
Run:

git clone

https://github.com/Crypto-TII/pqc-engineering-ssec-23.git

Figure 3: Downloaded project structure.



How to Build? (1/2)

Run:

Figure 4: Build instructions.



How to Build? (2/2)

Figure 5: Build process demo.



How to Run Tests? (1/2)

For running unit tests, simply execute:

▶ cd cmake-build-release

▶ ./tests/tests-ssec-p254

▶ ./tests/tests-ssec-p255

▶ ./tests/tests-ssec-p381

▶ ./tests/tests-ssec-p383

▶ ./tests/tests-ssec-p398

▶ ./tests/tests-ssec-p511

▶ ./tests/tests-ssec-p575

▶ ./tests/tests-ssec-p592

▶ ./tests/tests-ssec-p765

▶ ./tests/tests-ssec-p783



How to Run Tests? (2/2)

Figure 6: Test demo.



How to Benchmark? (1/4)

▶ Important: Need to use flags -DCMAKE BUILD TYPE=Release

-DBENCHMARKING=CYCLES when building.

▶ If the flags were not used, the benchmarks will be empty.

Figure 7: Benchmark errors



How to Benchmark? (2/4)

To build benchmarking, simply execute:

▶ cmake -DCMAKE BUILD TYPE=Release

-DBENCHMARKING=CYCLES -DARCHITECTURE=x8664 -B

cmake-build-release-cycles-x8664

▶ cd cmake-build-release-cycles-x8664

▶ make -j



How to Benchmark? (3/4)

To run benchmarking, inside the
cmake-build-release-cycles-x8664 folder, simply execute:

▶ benchmarks/benchmarks-ssec-p254

▶ benchmarks/benchmarks-ssec-p255

▶ benchmarks/benchmarks-ssec-p381

▶ benchmarks/benchmarks-ssec-p383

▶ benchmarks/benchmarks-ssec-p398

▶ benchmarks/benchmarks-ssec-p511

▶ benchmarks/benchmarks-ssec-p575

▶ benchmarks/benchmarks-ssec-p592

▶ benchmarks/benchmarks-ssec-p765

▶ benchmarks/benchmarks-ssec-p783



How to Benchmark? (4/4)

Figure 8: Benchmarking Demo



Reproducing Manuscript’s Graphics
▶ Scripts located in reproduce results folder.
▶ Need Python: Numpy and Matplotlib.

Figure 9: Location of bash scripts to reproduce manuscript’s results.



Reproducing Manuscript’s Graphics: Figure 3 (1/4)

Simply execute

▶ cd reproduce results/manuscript figure 03

▶ chmod +x generate figure 03.sh

▶ ./generate figure 03.sh



Reproducing Manuscript’s Graphics: Figure 3 (2/4)

Figure 10: Generation script for Figure 3.



Reproducing Manuscript’s Graphics: Figure 3 (3/4)

Figure 11: Generated statistical results from generate figure 03.sh



Reproducing Manuscript’s Graphics: Figure 3 (4/4)

Figure 12: Manuscript’s Figure 3.



Reproducing Manuscript’s Graphics: Figure 4 (1/4)

Simply execute

▶ cd reproduce results/manuscript figure 04

▶ chmod +x generate figure 04.sh

▶ ./generate figure 04.sh



Reproducing Manuscript’s Graphics: Figure 4 (2/4)

Figure 13: Generation script for Figure 4.



Reproducing Manuscript’s Graphics: Figure 4 (3/4)

Figure 14: Generated statistical results from generate figure 04.sh



Reproducing Manuscript’s Graphics: Figure 4 (4/4)

Figure 15: Manuscript’s Figure 4.



Reproducing Manuscript’s Graphics: Figure 5 (1/5)

Simply execute

▶ cd reproduce results/manuscript figure 05

▶ chmod +x generate figure 05.sh

▶ ./generate figure 05.sh



Reproducing Manuscript’s Graphics: Figure 5 (2/5)

▶ The previous commands will (automatically) generate some
folders.

▶ You can delete these (automatically-generated) folders
between each run if necessary.

Figure 16: Automatically-generated folders.



Reproducing Manuscript’s Graphics: Figure 5 (3/5)

Figure 17: Generation script for Figure 5.



Reproducing Manuscript’s Graphics: Figure 5 (4/5)

Figure 18: Generated statistical results from generate figure 05.sh



Reproducing Manuscript’s Graphics: Figure 5 (5/5)

Figure 19: Manuscript’s Figure 5.



Generating Technical Documentation (1/2)

We use Doxygen to generate the technical documentation.

▶ Configuration file: Doxyfile
▶ To generate, simply execute:

▶ cd docs
▶ doxygen Doxyfile

▶ Output in docs/html/index.html

Public link:
https://crypto-tii.github.io/pqc-engineering-ssec-23/

https://crypto-tii.github.io/pqc-engineering-ssec-23/


Generating Technical Documentation (2/2)

Figure 20: Technical documentation generated using Doxygen.



CI/CD Overview (1/3)

In order to show that our project can be integrated in a Real-World
industrial environment, we provide a CI/CD pipeline.

▶ We use GitHub Actions for CI/CD.

▶ Pipeline includes Build, Test, Benchmark, and Reporting
stages.

▶ YAML config:
.github/workflows/cmake-multi-platform.yml



CI/CD Overview (2/3)

Figure 21: Designed CI/CD pipeline with Build, Test, Benchmarking,
and Reporting stages.



CI/CD Overview (3/3)

Figure 22: Pipeline in action, running with GitHub actions.



CI Stage: Build

▶ Triggers on push and pull request

▶ Any linux (Ubuntu example), Intel x86 64 CPU.

▶ Uses CMake caching for speed.



CI Stage: Test

▶ Runs unit and integration tests

▶ Stores artifacts for future analysis

▶ Automatic failure reports



CI Stage: Benchmark

▶ Executes performance benchmarks in both CPU cycles and
execution nanoseconds.

▶ Benchmarking for every proposed prime.



CI Stage: Reporting (1/2)

▶ All the scripts used to reproduce our results reported in the
manuscript are tested.

▶ The generated statistical data and the generated graphs are
uploaded as public artifacts in our GitHub pipeline so they can
be used freely.

▶ This allows collaborators, scientists, and anyone in general to
reproduce, validate, and expand our research project.



CI Stage: Reporting (2/2)

Figure 23: Publicly available artifacts.



Docker Container

Simply execute

▶ docker pull

tiicrc/github-selfhosted-runner-pqc:latest

▶ docker images | grep pqc



Docker Container (2/2)

To mount, first locate your terminal at the artifact’s root folder
(pqc-engineering-ssec-23) and execute

▶ docker run --rm -ti -v $PWD:/src -w /src

tiicrc/github-selfhosted-runner-pqc:latest bash

After mounting, the terminal will change to

▶ /src# <insert commands here>



Industrial Readiness Proof-of-Concept

▶ Simulates real deployment environments

▶ Documented logs, errors, and benchmarking outputs



Additional Resources: CPU benchmarking

▶ Included details on how to:
▶ Turn off turbo-boost.
▶ Assembly instructions used in our benchmarking.

▶ Automated benchmarking scripts under
high-level-scripts/benchmark 02 20250408.sh



License and Contributions

▶ Open-source under Apache License.

▶ License guidelines in LICENSE file.

▶ Issues and PRs welcome!



About the Authors
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▶ Eduardo Ochoa-Jiménez,
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