
Let us walk on the 3-isogeny graph: Step-by-step
Artifact Walkthrough

Jesús-Javier Chi-Doḿınguez, Eduardo Ochoa-Jiménez and
Ricardo-Neftaĺı Pontaza-Rodas

August 17, 2025

Outline

Repository Overview

System Requirements

How to Install and How to Build?

How to Run Tests?

How to Benchmark?

Reproducing Manuscript’s Graphics

Generating Technical Documentation

CI/CD Pipeline Overview

How to download our Docker Container? (1/2)

Additional Resources: CPU benchmarking

License and Contributions

Repository Overview (1/4)

▶ Let us walk on the 3-isogeny graph: efficient, fast, and simple
is an open-source C framework for using 3-radical isogenies to
improve some post-quantum cryptosystems (dCTIDH +
QFESTA).

▶ This presentation summarizes the software structure and
reproducibility workflow.

Repository Overview (2/4)

▶ Hosted on GitHub: https:
//github.com/Crypto-TII/pqc-engineering-ssec-23

▶ Modular design with components: Presentation Video, System
Requirements, Build, Test, Benchmarks, Docs, Manuscript
results replication, and CI/CD Pipeline.

https://github.com/Crypto-TII/pqc-engineering-ssec-23
https://github.com/Crypto-TII/pqc-engineering-ssec-23

Repository Overview (3/4)

Overview of our paper - YouTube video:
https://www.youtube.com/watch?v=BjedMooSV30&list=

PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q

Figure 1: Overview of our paper - YouTube video.

https://www.youtube.com/watch?v=BjedMooSV30&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q
https://www.youtube.com/watch?v=BjedMooSV30&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q

Repository Overview (4/4)

(Full) Guided Tour of our Artifact:
https://www.youtube.com/watch?v=hLk_B5NpKRA&list=

PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10

Figure 2: (Full) Guided Tour - YouTube video.

https://www.youtube.com/watch?v=hLk_B5NpKRA&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10
https://www.youtube.com/watch?v=hLk_B5NpKRA&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10

System Requirements

Our system requirements are extremely simple:

1. Out-of-the-box Linux (CPU Intel x86 64).

2. CMake + gcc

3. Python3:
▶ Numpy
▶ Matplotlib

How to Install?

Clone from GitHub.
Run:

git clone

https://github.com/Crypto-TII/pqc-engineering-ssec-23.git

Figure 3: Downloaded project structure.

How to Build? (1/2)

Run:

Figure 4: Build instructions.

How to Build? (2/2)

Figure 5: Build process demo.

How to Run Tests? (1/2)

For running unit tests, simply execute:

▶ cd cmake-build-release

▶ ./tests/tests-ssec-p254

▶ ./tests/tests-ssec-p255

▶ ./tests/tests-ssec-p381

▶ ./tests/tests-ssec-p383

▶ ./tests/tests-ssec-p398

▶ ./tests/tests-ssec-p511

▶ ./tests/tests-ssec-p575

▶ ./tests/tests-ssec-p592

▶ ./tests/tests-ssec-p765

▶ ./tests/tests-ssec-p783

How to Run Tests? (2/2)

Figure 6: Test demo.

How to Benchmark? (1/4)

▶ Important: Need to use flags -DCMAKE BUILD TYPE=Release

-DBENCHMARKING=CYCLES when building.

▶ If the flags were not used, the benchmarks will be empty.

Figure 7: Benchmark errors

How to Benchmark? (2/4)

To build benchmarking, simply execute:

▶ cmake -DCMAKE BUILD TYPE=Release

-DBENCHMARKING=CYCLES -DARCHITECTURE=x8664 -B

cmake-build-release-cycles-x8664

▶ cd cmake-build-release-cycles-x8664

▶ make -j

How to Benchmark? (3/4)

To run benchmarking, inside the
cmake-build-release-cycles-x8664 folder, simply execute:

▶ benchmarks/benchmarks-ssec-p254

▶ benchmarks/benchmarks-ssec-p255

▶ benchmarks/benchmarks-ssec-p381

▶ benchmarks/benchmarks-ssec-p383

▶ benchmarks/benchmarks-ssec-p398

▶ benchmarks/benchmarks-ssec-p511

▶ benchmarks/benchmarks-ssec-p575

▶ benchmarks/benchmarks-ssec-p592

▶ benchmarks/benchmarks-ssec-p765

▶ benchmarks/benchmarks-ssec-p783

How to Benchmark? (4/4)

Figure 8: Benchmarking Demo

Reproducing Manuscript’s Graphics
▶ Scripts located in reproduce results folder.
▶ Need Python: Numpy and Matplotlib.

Figure 9: Location of bash scripts to reproduce manuscript’s results.

Reproducing Manuscript’s Graphics: Figure 3 (1/4)

Simply execute

▶ cd reproduce results/manuscript figure 03

▶ chmod +x generate figure 03.sh

▶ ./generate figure 03.sh

Reproducing Manuscript’s Graphics: Figure 3 (2/4)

Figure 10: Generation script for Figure 3.

Reproducing Manuscript’s Graphics: Figure 3 (3/4)

Figure 11: Generated statistical results from generate figure 03.sh

Reproducing Manuscript’s Graphics: Figure 3 (4/4)

Figure 12: Manuscript’s Figure 3.

Reproducing Manuscript’s Graphics: Figure 4 (1/4)

Simply execute

▶ cd reproduce results/manuscript figure 04

▶ chmod +x generate figure 04.sh

▶ ./generate figure 04.sh

Reproducing Manuscript’s Graphics: Figure 4 (2/4)

Figure 13: Generation script for Figure 4.

Reproducing Manuscript’s Graphics: Figure 4 (3/4)

Figure 14: Generated statistical results from generate figure 04.sh

Reproducing Manuscript’s Graphics: Figure 4 (4/4)

Figure 15: Manuscript’s Figure 4.

Reproducing Manuscript’s Graphics: Figure 5 (1/5)

Simply execute

▶ cd reproduce results/manuscript figure 05

▶ chmod +x generate figure 05.sh

▶ ./generate figure 05.sh

Reproducing Manuscript’s Graphics: Figure 5 (2/5)

▶ The previous commands will (automatically) generate some
folders.

▶ You can delete these (automatically-generated) folders
between each run if necessary.

Figure 16: Automatically-generated folders.

Reproducing Manuscript’s Graphics: Figure 5 (3/5)

Figure 17: Generation script for Figure 5.

Reproducing Manuscript’s Graphics: Figure 5 (4/5)

Figure 18: Generated statistical results from generate figure 05.sh

Reproducing Manuscript’s Graphics: Figure 5 (5/5)

Figure 19: Manuscript’s Figure 5.

Generating Technical Documentation (1/2)

We use Doxygen to generate the technical documentation.

▶ Configuration file: Doxyfile
▶ To generate, simply execute:

▶ cd docs
▶ doxygen Doxyfile

▶ Output in docs/html/index.html

Public link:
https://crypto-tii.github.io/pqc-engineering-ssec-23/

https://crypto-tii.github.io/pqc-engineering-ssec-23/

Generating Technical Documentation (2/2)

Figure 20: Technical documentation generated using Doxygen.

CI/CD Overview (1/3)

In order to show that our project can be integrated in a Real-World
industrial environment, we provide a CI/CD pipeline.

▶ We use GitHub Actions for CI/CD.

▶ Pipeline includes Build, Test, Benchmark, and Reporting
stages.

▶ YAML config:
.github/workflows/cmake-multi-platform.yml

CI/CD Overview (2/3)

Figure 21: Designed CI/CD pipeline with Build, Test, Benchmarking,
and Reporting stages.

CI/CD Overview (3/3)

Figure 22: Pipeline in action, running with GitHub actions.

CI Stage: Build

▶ Triggers on push and pull request

▶ Any linux (Ubuntu example), Intel x86 64 CPU.

▶ Uses CMake caching for speed.

CI Stage: Test

▶ Runs unit and integration tests

▶ Stores artifacts for future analysis

▶ Automatic failure reports

CI Stage: Benchmark

▶ Executes performance benchmarks in both CPU cycles and
execution nanoseconds.

▶ Benchmarking for every proposed prime.

CI Stage: Reporting (1/2)

▶ All the scripts used to reproduce our results reported in the
manuscript are tested.

▶ The generated statistical data and the generated graphs are
uploaded as public artifacts in our GitHub pipeline so they can
be used freely.

▶ This allows collaborators, scientists, and anyone in general to
reproduce, validate, and expand our research project.

CI Stage: Reporting (2/2)

Figure 23: Publicly available artifacts.

Docker Container

Simply execute

▶ docker pull

tiicrc/github-selfhosted-runner-pqc:latest

▶ docker images | grep pqc

Docker Container (2/2)

To mount, first locate your terminal at the artifact’s root folder
(pqc-engineering-ssec-23) and execute

▶ docker run --rm -ti -v $PWD:/src -w /src

tiicrc/github-selfhosted-runner-pqc:latest bash

After mounting, the terminal will change to

▶ /src# <insert commands here>

Industrial Readiness Proof-of-Concept

▶ Simulates real deployment environments

▶ Documented logs, errors, and benchmarking outputs

Additional Resources: CPU benchmarking

▶ Included details on how to:
▶ Turn off turbo-boost.
▶ Assembly instructions used in our benchmarking.

▶ Automated benchmarking scripts under
high-level-scripts/benchmark 02 20250408.sh

License and Contributions

▶ Open-source under Apache License.

▶ License guidelines in LICENSE file.

▶ Issues and PRs welcome!

About the Authors

▶ Jesús-Javier Chi-Doḿınguez,

▶ Eduardo Ochoa-Jiménez,

▶ Ricardo-Neftaĺı Pontaza-Rodas.

Thank you

Thank you

Thank you!

	Repository Overview
	System Requirements
	How to Install and How to Build?
	How to Run Tests?
	How to Benchmark?
	Reproducing Manuscript's Graphics
	Generating Technical Documentation
	CI/CD Pipeline Overview
	How to download our Docker Container? (1/2)
	Additional Resources: CPU benchmarking
	License and Contributions

