Let us walk on the 3-isogeny graph: Step-by-step
Artifact Walkthrough

Jesus-Javier Chi-Dominguez, Eduardo Ochoa-Jiménez and
Ricardo-Neftali Pontaza-Rodas

August 17, 2025



Outline

Repository Overview

System Requirements

How to Install and How to Build?

How to Run Tests?

How to Benchmark?

Reproducing Manuscript's Graphics

Generating Technical Documentation

Cl/CD Pipeline Overview

How to download our Docker Container? (1/2)
Additional Resources: CPU benchmarking

License and Contributions



Repository Overview (1/4)

> Let us walk on the 3-isogeny graph: efficient, fast, and simple
is an open-source C framework for using 3-radical isogenies to
improve some post-quantum cryptosystems (dCTIDH +
QFESTA).

» This presentation summarizes the software structure and
reproducibility workflow.



Repository Overview (2/4)

» Hosted on GitHub: https:
//github.com/Crypto-TII/pqc-engineering-ssec-23

» Modular design with components: Presentation Video, System
Requirements, Build, Test, Benchmarks, Docs, Manuscript
results replication, and CI/CD Pipeline.


https://github.com/Crypto-TII/pqc-engineering-ssec-23
https://github.com/Crypto-TII/pqc-engineering-ssec-23

Repository Overview (3/4)

Overview of our paper - YouTube video:
https://www.youtube.com/watch?v=BjedMooSV30&list=
PLFgwYy6Y-xWYCFruq66CFXXiWEWckEKk6GQ
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Figure 1: Overview of our paper - YouTube video.


https://www.youtube.com/watch?v=BjedMooSV30&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q
https://www.youtube.com/watch?v=BjedMooSV30&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q

Repository Overview (4/4)

(Full) Guided Tour of our Artifact:
https://www.youtube.com/watch?v=hLk_B5NpKRA&list=
PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10
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Figure 2: (Full) Guided Tour - YouTube video.



https://www.youtube.com/watch?v=hLk_B5NpKRA&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10
https://www.youtube.com/watch?v=hLk_B5NpKRA&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10

System Requirements

Our system requirements are extremely simple:
1. Out-of-the-box Linux (CPU Intel x86_64).
2. CMake + gcc

3. Python3:

> Numpy
» Matplotlib



How to Install?

Clone from GitHub.
Run:

git clone
https://github.com/Crypto-TII/pqc-engineering-ssec-23.git

[7 pgc-engineering-ssec-23

—[7 .github

7 c-code

——[¥ dCTIDH

——[7 docs

—13 gifs

7 high-level-scripts

— 7 obtained_statistics_examples
— ¥ reproduce_results

* README.md

Figure 3: Downloaded project structure.



How to Build? (1/2)

Run:

cd c-code

cmake -DCMAKE_BUILD_TYPE=Release -B cmake-build-release
cd cmake-build-release

make -j

Figure 4: Build instructions.



How to Build? (2/2)

[ 84%] Built target ssec-p783

/usr/bin/ld: [ 8u%]

warning: p254.s.0: missing .note.GNU-stack section implies executable stack

Jusr/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker

Built target ssec-p765

Built target benchmarks-ssec-p254

Jusr/bin/ld: warning: p575.s.0: missing .note.GNU-stack section implies executable stack
Jusr/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
[ 91%] Built target benchmarks-ssec-p575

Figure 5: Build process demo.




How to Run Tests? (1/2)

For running unit tests, simply execute:
» cd cmake-build-release
./tests/tests-ssec-p254
./tests/tests-ssec-p255
./tests/tests-ssec-p381
./tests/tests-ssec-p383
./tests/tests-ssec-p398
./tests/tests-ssec-p511
./tests/tests-ssec-p575
./tests/tests-ssec-p592
./tests/tests-ssec-p765
./tests/tests-ssec-p783
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How to Run Tests? (2/2)
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Figure 6: Test demo.




How to Benchmark? (1/4)

» Important: Need to use flags -DCMAKE_BUILD_TYPE=Release
-DBENCHMARKING=CYCLES when building.

> If the flags were not used, the benchmarks will be empty.

% benchmarks/benchmarks-s:

Figure 7: Benchmark errors



How to Benchmark? (2/4)

To build benchmarking, simply execute:

> cmake -DCMAKE BUILD_TYPE=Release
-DBENCHMARKING=CYCLES -DARCHITECTURE=x8664 -B
cmake-build-release-cycles-x8664

» cd cmake-build-release-cycles-x8664
> make -j



How to Benchmark? (3/4)

To run benchmarking, inside the
cmake-build-release-cycles-x8664 folder, simply execute:

» benchmarks/benchmarks-ssec-p254
benchmarks/benchmarks-ssec-p255
benchmarks/benchmarks-ssec-p381
benchmarks/benchmarks-ssec-p383
benchmarks/benchmarks-ssec-p398
benchmarks/benchmarks-ssec-p511
benchmarks/benchmarks-ssec-p575
benchmarks/benchmarks-ssec-p592
benchmarks/benchmarks-ssec-p765

vVvvyVvYvVvyVvYVyYvYyy

benchmarks/benchmarks-ssec-p783



How to Benchmark? (4/4)

B mmotmensoot o, X @ et sounk o %
Linuen@linuen-aerol6:~/test_deno/pac-engineering-ssec e-code/emake-build-debug-cyeles—x866U4 benchmarks/
CMakeFiles/ benchmarks-ssec-p381 benchmarks-ssec-p511 benchmarks—ssec-p765
benchmarks-ssec-p254 benchmarks-ssec-p383 benchmarks-ssec-p575 benchmarks-ssec-p783
benchmarks-ssec-p255 benchmarks-ssec-p398 benchmarks-ssec-p592
en@linuen-aerols:~/test_demo/pgc-engi i ssec —code/emake-build-debug-cycles—x866U$ benchmarks/benchmarks-ssec
-p254
Numbers correspond for CGLHash2.
Average: 155026965

Numbers correspond for CGLHash3.
Average: 152684312

Linuen@limuen-aerol6:~/test_demo/pgc-engineering-ssec-23/c-code/cnake-build-debug-cycles-x8664% benchmarks/benchnarks-ssec
-p255

Numbers correspond for CGLHash2.
Average: 1554984u8

Numbers correspond for CGLHash3.
Average: 13d43259u8

jemo/pqc-engineering-ssec-23/c-code/cnake-build-deb cles—xB664% benchmarks/benchmarks-ssec
Numbers correspond for CGLHash2.
Average: 353393318

Numbers correspond for CGLHash3.
Average: 375600278

iwuen@liwuen-aerolé L: L ering-sse fc-code/cmake-bu debug-cycles-xB664 l

Figure 8: Benchmarking Demo




Reproducing Manuscript's Graphics

» Scripts located in reproduce_results folder.
» Need Python: Numpy and Matplotlib.

pgc-engineering-ssec-23
c-code
dCTIDH
docs
gifs
high-level-scripts
obtained statistics examples
reproduce_results
" manuscript_figure_03
— ' benchmark_graph_83.py
_ generate_figure_B3.sh # <= NEED TO EXECUTE
kAAf manuscript_figure_04
f— ' benchmark_graph_s4.py
L generate_figure_04.sh # <= NEED TO EXECUTE
L manuscript_figure_85
dCTIDH_benchmarks_output <= AUTOMATICALLY GENERATED!
dCTIDH builds = AUTOMATICALLY GENERATED!
statistics output # <= AUTOMATICALLY GENERATED!
analyze_bench.py
benchmark_graph_85.py
generate_figure_85.sh # <= NEED TO EXECUTE
] README . md

*
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Figure 9: Location of bash scripts to reproduce manuscript's results.
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Reproducing Manuscript’s Graphics: Figure 3 (1/4)

Simply execute
> cd reproduce_results/manuscript_figure 03
» chmod +x generate figure 03.sh
> ./generate_figure 03.sh



Reproducing Manuscript's Graphics: Figure 3 (2/4)
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: 769622965
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Figure 10: Generation script for Figure 3.




Reproducing Manuscript's Graphics: Figure 3 (3/4)
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Figure 11: Generated statistical results from generate figure 03.sh



Reproducing Manuscript's Graphics: Figure 3 (4/4)
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Figure 3: Benchmarks for the 2-isogenies vs. 3-isogenies walks, measured in CPU cycles.

Figure 12: Manuscript's Figure 3.
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Reproducing Manuscript's Graphics: Figure 4 (1/4)

Simply execute
» cd reproduce_results/manuscript_figure 04
» chmod +x generate figure 04.sh
> ./generate_figure 04.sh



Reproducing Manuscript's Graphics: Figure 4 (2/4)

Figure 13: Generation script for Figure 4.




Reproducing Manuscript's Graphics: Figure 4 (3/4)
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Figure 14: Generated statistical results from generate figure 04.sh



Reproducing Manuscript's Graphics: Figure 4 (4/4)
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Figure 4: Benchmarks for the 3-isogenies \\'ulk4 for our proposed primes (p381, p575
and p765) vs. QFESTA [NO24] primes (p398, p592 and p783). Both p381 and p398 offer
128-bits security, while p575 and p592 offer 192-bits security, and p765 and p783 offer
256-bits security. For these six primes, the performance was measured in CPU cycles,
having an improvement of 35,60% for 128-bits, 31.62% for 192-bits, and 26.41% for 256-bits,
respectively.

Figure 15: Manuscript's Figure 4.




Reproducing Manuscript's Graphics: Figure 5 (1/5)

Simply execute
> cd reproduce_results/manuscript_figure 05
» chmod +x generate figure 05.sh
> ./generate_figure 05.sh



Reproducing Manuscript's Graphics: Figure 5 (2/5)

» The previous commands will (automatically) generate some
folders.

» You can delete these (automatically-generated) folders
between each run if necessary.

manuscript_figure_ 05 LD
— dCTIDH benchmarks_output # <= AUTOMATICALLY GENERATED!
— dCTIDH builds # <= AUTOMATICALLY GENERATED!
— statistics_output # == AUTOMATICALLY GENERATED!
|| analyze_bench.py
|| benchmark_graph_5.py
—_ generate figure 05.sh # <= NEED TO EXECUTE

Figure 16: Automatically-generated folders.



Reproducing Manuscript's Graphics: Figure 5 (3/5
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Figure 17: Generation script for Figure 5.




Reproducing Manuscript's Graphics: Figure 5 (4/5)
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Figure 18: Generated statistical results from generate_figure_ 05.sh



Reproducing Manuscript's Graphics: Figure 5 (5/5)
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Figure 5: Benchmarks for state-of-the-art dCTIDH vs. dCTIDH modified using our proposal.
Both the key generation (keygen) and the shared key derivation (derive) were tested. From

Figure 19: Manuscript's Figure 5.



Generating Technical Documentation (1/2)

We use Doxygen to generate the technical documentation.
» Configuration file: Doxyfile

> To generate, simply execute:

> cd docs
» doxygen Doxyfile

» Output in docs/html/index.html

Public link:
https://crypto-tii.github.io/pqc-engineering-ssec-23/


https://crypto-tii.github.io/pqc-engineering-ssec-23/

Generating Technical Documentation (2/2
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Figure 20: Technical documentation generated using Doxygen.




Cl/CD Overview (1/3)

In order to show that our project can be integrated in a Real-World
industrial environment, we provide a ClI/CD pipeline.

» We use GitHub Actions for CI/CD.

» Pipeline includes Build, Test, Benchmark, and Reporting
stages.

> YAML config:
.github/workflows/cmake-multi-platform.yml



Cl/CD Overview (2/3)

pgc-engineering-ssec-23

O—’—’_E

CMAKE CTEST DOXYGEN
|

) GitHub Actions

Build l
1
e Test -  aul I
1

Benchmarking
1

Reporting

Figure 21: Designed CI/CD pipeline with Build, Test, Benchmarking,
and Reporting stages.



Cl/CD Overview (3/3)

cmake-multi-platform.yml|
on: push

Figure 22: Pipeline in action, running with GitHub actions.



Cl Stage: Build

» Triggers on push and pull request
» Any linux (Ubuntu example), Intel x86_64 CPU.
» Uses CMake caching for speed.



Cl Stage: Test

» Runs unit and integration tests
> Stores artifacts for future analysis

» Automatic failure reports



Cl Stage: Benchmark

» Executes performance benchmarks in both CPU cycles and
execution nanoseconds.

» Benchmarking for every proposed prime.



Cl Stage: Reporting (1/2)

» All the scripts used to reproduce our results reported in the
manuscript are tested.

> The generated statistical data and the generated graphs are
uploaded as public artifacts in our GitHub pipeline so they can
be used freely.

» This allows collaborators, scientists, and anyone in general to
reproduce, validate, and expand our research project.



Cl Stage: Reporting (2/2)
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Figure 23: Publicly available artifacts.




Docker Container

Simply execute

> docker pull
tiicrc/github-selfhosted-runner-pqc:latest

> docker images | grep pqc



Docker Container (2/2)

To mount, first locate your terminal at the artifact’s root folder
(pgc-engineering-ssec-23) and execute

» docker run --rm -ti -v $PWD:/src -w /src
tiicrc/github-selfhosted-runner-pqc:latest bash

After mounting, the terminal will change to

» /src# <insert commands here>



Industrial Readiness Proof-of-Concept

» Simulates real deployment environments

» Documented logs, errors, and benchmarking outputs



Additional Resources: CPU benchmarking

» Included details on how to:
» Turn off turbo-boost.
» Assembly instructions used in our benchmarking.
» Automated benchmarking scripts under
high-level-scripts/benchmark 02_20250408.sh



License and Contributions

» Open-source under Apache License.
» License guidelines in LICENSE file.

» Issues and PRs welcome!



About the Authors

» Jests-Javier Chi-Dominguez,
» Eduardo Ochoa-Jiménez,
» Ricardo-Neftali Pontaza-Rodas.
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