Let us walk on the 3-isogeny graph: Step-by-step
Artifact Walkthrough

Jesus-Javier Chi-Dominguez, Eduardo Ochoa-Jiménez and
Ricardo-Neftali Pontaza-Rodas

August 17, 2025

Outline

Repository Overview

System Requirements

How to Install and How to Build?

How to Run Tests?

How to Benchmark?

Reproducing Manuscript's Graphics

Generating Technical Documentation

Cl/CD Pipeline Overview

How to download our Docker Container? (1/2)
Additional Resources: CPU benchmarking

License and Contributions

Repository Overview (1/4)

> Let us walk on the 3-isogeny graph: efficient, fast, and simple
is an open-source C framework for using 3-radical isogenies to
improve some post-quantum cryptosystems (dCTIDH +
QFESTA).

» This presentation summarizes the software structure and
reproducibility workflow.

Repository Overview (2/4)

» Hosted on GitHub: https:
//github.com/Crypto-TII/pqc-engineering-ssec-23

» Modular design with components: Presentation Video, System
Requirements, Build, Test, Benchmarks, Docs, Manuscript
results replication, and CI/CD Pipeline.

https://github.com/Crypto-TII/pqc-engineering-ssec-23
https://github.com/Crypto-TII/pqc-engineering-ssec-23

Repository Overview (3/4)

Overview of our paper - YouTube video:
https://www.youtube.com/watch?v=BjedMooSV30&list=
PLFgwYy6Y-xWYCFruq66CFXXiWEWckEKk6GQ

LET US WALK ON THE
3-1SOGENY GRAPH:
EFFICIENT, FAST, AND SIMPLE

ZINIZas

N\

POST-QUANTUM

Figure 1: Overview of our paper - YouTube video.

https://www.youtube.com/watch?v=BjedMooSV30&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q
https://www.youtube.com/watch?v=BjedMooSV30&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q

Repository Overview (4/4)

(Full) Guided Tour of our Artifact:
https://www.youtube.com/watch?v=hLk_B5NpKRA&list=
PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10

FULL TOUR OF OUR
GITHUB ARTIFACT

BN

11
= A
s -
REPLICATE DOXYGEN

Figure 2: (Full) Guided Tour - YouTube video.

https://www.youtube.com/watch?v=hLk_B5NpKRA&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10
https://www.youtube.com/watch?v=hLk_B5NpKRA&list=PLFgwYy6Y-xWYCFruq66CFXXiWEWckEk6Q&index=10

System Requirements

Our system requirements are extremely simple:
1. Out-of-the-box Linux (CPU Intel x86_64).
2. CMake + gcc

3. Python3:

> Numpy
» Matplotlib

How to Install?

Clone from GitHub.
Run:

git clone
https://github.com/Crypto-TII/pqc-engineering-ssec-23.git

[7 pgc-engineering-ssec-23

—[7 .github

7 c-code

——[¥ dCTIDH

——[7 docs

—13 gifs

7 high-level-scripts

— 7 obtained_statistics_examples
— ¥ reproduce_results

* README.md

Figure 3: Downloaded project structure.

How to Build? (1/2)

Run:

cd c-code

cmake -DCMAKE_BUILD_TYPE=Release -B cmake-build-release
cd cmake-build-release

make -j

Figure 4: Build instructions.

How to Build? (2/2)

[84%] Built target ssec-p783

/usr/bin/ld: [8u%]

warning: p254.s.0: missing .note.GNU-stack section implies executable stack

Jusr/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker

Built target ssec-p765

Built target benchmarks-ssec-p254

Jusr/bin/ld: warning: p575.s.0: missing .note.GNU-stack section implies executable stack
Jusr/bin/ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
[91%] Built target benchmarks-ssec-p575

Figure 5: Build process demo.

How to Run Tests? (1/2)

For running unit tests, simply execute:
» cd cmake-build-release
./tests/tests-ssec-p254
./tests/tests-ssec-p255
./tests/tests-ssec-p381
./tests/tests-ssec-p383
./tests/tests-ssec-p398
./tests/tests-ssec-p511
./tests/tests-ssec-p575
./tests/tests-ssec-p592
./tests/tests-ssec-p765
./tests/tests-ssec-p783

VVvVYyVvVYVVyVYVYyYVYY

How to Run Tests? (2/2)

R e ———

.60992827
tests/fp/cube_root] .0ee0lu6y
.60732169
tests/fq/is_zero] .60080041
.000208398
tests/fq/locate_zero 1 .00034651
.17325337
tests/fq/linear_pass 1 .BOBBTS55
43777348
tests/fq/add_and_sub] .60000081
.000UB625
tests/fq/mul_and_sqr 1 00008165
.60882U68

/ 0.808981516 CPU
/
/
/
/
/
/
/
/
/
/
/
/
tests/fg/inv] 00004197 /
/
/
/
/
/
/
/
/
/
/
/
/

(]
0.008001443 CPU
0.00721689 CPU
0.600606048 CPU
0.00020008 CPU
0.60034255 CPU
0.17127737 CPU
0.80086566 CPU
0.43282997 CPU
0.e00ee08e CPU
0.60040114 CPU
0.00000163 CPU
0.60081593 CPU
0.008004155 CPU
.82098698]
tests/fq/batchinv] .00026474]
.13237e€1 (]
tests/fq/square_root_slow] .60034206 / O
.17183051 @
tests/fq/square_root_fast 1 .00BR666U / O
.03331849]
tests/fq/cube_root] .600220U6]
.11e23e42 / 0
tests/isogeny_walks/mul_by_small_constants 1 .60000928 / @
]
o

]
1
]
1
]
1
1
]
]
]
1
]
1
1
.62077652 CPU]
00026214 CPU]
.13106988 CPU]
.60033870 CPU]
16934774 CPU]
68806599 CPU]
.03299386 CPU]
.90022002 CPU]
.11000877 CPU]
.00006918 CPU]
.00U63850 .98U592U46 CPU]

tests/isogeny_walks/degree_2] 02829769 92837272 CPU]
4.14884703 / 14.18636159 CPU

tests/isogeny_walks/trit_string] .00001137 / 0.00001158 CPU]
.00568370 / 0.08579185 CPU]

tests/isogeny_walks/degree_3 1 .01205582 / 0.01215694 CPU]
.82790910 / 6.07846774 CPU]

tests/isogeny_walks/degree_3_fp] 24975477 / 0.2u984961 CPU]
24.87738506 / 124.92450647 C

22 of 22 (100%) tests successful, 0 (8%) test skipped
B $

Figure 6: Test demo.

How to Benchmark? (1/4)

» Important: Need to use flags -DCMAKE_BUILD_TYPE=Release
-DBENCHMARKING=CYCLES when building.

> If the flags were not used, the benchmarks will be empty.

% benchmarks/benchmarks-s:

Figure 7: Benchmark errors

How to Benchmark? (2/4)

To build benchmarking, simply execute:

> cmake -DCMAKE BUILD_TYPE=Release
-DBENCHMARKING=CYCLES -DARCHITECTURE=x8664 -B
cmake-build-release-cycles-x8664

» cd cmake-build-release-cycles-x8664
> make -j

How to Benchmark? (3/4)

To run benchmarking, inside the
cmake-build-release-cycles-x8664 folder, simply execute:

» benchmarks/benchmarks-ssec-p254
benchmarks/benchmarks-ssec-p255
benchmarks/benchmarks-ssec-p381
benchmarks/benchmarks-ssec-p383
benchmarks/benchmarks-ssec-p398
benchmarks/benchmarks-ssec-p511
benchmarks/benchmarks-ssec-p575
benchmarks/benchmarks-ssec-p592
benchmarks/benchmarks-ssec-p765

vVvvyVvYvVvyVvYVyYvYyy

benchmarks/benchmarks-ssec-p783

How to Benchmark? (4/4)

B mmotmensoot o, X @ et sounk o %
Linuen@linuen-aerol6:~/test_deno/pac-engineering-ssec e-code/emake-build-debug-cyeles—x866U4 benchmarks/
CMakeFiles/ benchmarks-ssec-p381 benchmarks-ssec-p511 benchmarks—ssec-p765
benchmarks-ssec-p254 benchmarks-ssec-p383 benchmarks-ssec-p575 benchmarks-ssec-p783
benchmarks-ssec-p255 benchmarks-ssec-p398 benchmarks-ssec-p592
en@linuen-aerols:~/test_demo/pgc-engi i ssec —code/emake-build-debug-cycles—x866U$ benchmarks/benchmarks-ssec
-p254
Numbers correspond for CGLHash2.
Average: 155026965

Numbers correspond for CGLHash3.
Average: 152684312

Linuen@limuen-aerol6:~/test_demo/pgc-engineering-ssec-23/c-code/cnake-build-debug-cycles-x8664% benchmarks/benchnarks-ssec
-p255

Numbers correspond for CGLHash2.
Average: 1554984u8

Numbers correspond for CGLHash3.
Average: 13d43259u8

jemo/pqc-engineering-ssec-23/c-code/cnake-build-deb cles—xB664% benchmarks/benchmarks-ssec
Numbers correspond for CGLHash2.
Average: 353393318

Numbers correspond for CGLHash3.
Average: 375600278

iwuen@liwuen-aerolé L: L ering-sse fc-code/cmake-bu debug-cycles-xB664 l

Figure 8: Benchmarking Demo

Reproducing Manuscript's Graphics

» Scripts located in reproduce_results folder.
» Need Python: Numpy and Matplotlib.

pgc-engineering-ssec-23
c-code
dCTIDH
docs
gifs
high-level-scripts
obtained statistics examples
reproduce_results
" manuscript_figure_03
— ' benchmark_graph_83.py
_ generate_figure_B3.sh # <= NEED TO EXECUTE
kAAf manuscript_figure_04
f— ' benchmark_graph_s4.py
L generate_figure_04.sh # <= NEED TO EXECUTE
L manuscript_figure_85
dCTIDH_benchmarks_output <= AUTOMATICALLY GENERATED!
dCTIDH builds = AUTOMATICALLY GENERATED!
statistics output # <= AUTOMATICALLY GENERATED!
analyze_bench.py
benchmark_graph_85.py
generate_figure_85.sh # <= NEED TO EXECUTE
] README . md

*
|

- TITITIT

[TTTTT

Figure 9: Location of bash scripts to reproduce manuscript's results.

s

Reproducing Manuscript’s Graphics: Figure 3 (1/4)

Simply execute
> cd reproduce_results/manuscript_figure 03
» chmod +x generate figure 03.sh
> ./generate_figure 03.sh

Reproducing Manuscript's Graphics: Figure 3 (2/4)

aPIC i »fdemofpacergine.

correspond for
: 769622965

rks /benchmarks-ssec-ps11 | tee benchmarks_ssec-p511-output. txt

correspond for

Figure 10: Generation script for Figure 3.

Reproducing Manuscript's Graphics: Figure 3 (3/4)

EBenchmarks for the 2-isogeniss vs. 3-isogenies wal

110
10 s z-scgaries
- isagenies
os
os
04
“ I I I
0 — — - - -

Primes

CPU Cycles

€ $Qz=

Figure 11: Generated statistical results from generate figure 03.sh

Reproducing Manuscript's Graphics: Figure 3 (4/4)

x10°

=

x
=
7

1485 x 107

o

CPU Cycles
-

=
X

x
3

] 1.67 % 107

p783

311

PGS
Primes

Figure 3: Benchmarks for the 2-isogenies vs. 3-isogenies walks, measured in CPU cycles.

Figure 12: Manuscript's Figure 3.

u}
o)
I
i
it

Reproducing Manuscript's Graphics: Figure 4 (1/4)

Simply execute
» cd reproduce_results/manuscript_figure 04
» chmod +x generate figure 04.sh
> ./generate_figure 04.sh

Reproducing Manuscript's Graphics: Figure 4 (2/4)

Figure 13: Generation script for Figure 4.

Reproducing Manuscript's Graphics: Figure 4 (3/4)

Bencnmarks for the 3-i500enies walks: Our solution vs. QFESTA

T - our Solution
- ESTH

CPU Cycles
2 2

182-0ils: P73 vs pA
Primes

ftd» +QE B

Figure 14: Generated statistical results from generate figure 04.sh

Reproducing Manuscript's Graphics: Figure 4 (4/4)

x10°

P31 p3os
125-bits 192

Primes

592 PTG p
256-bits

Figure 4: Benchmarks for the 3-isogenies \\'ulk4 for our proposed primes (p381, p575
and p765) vs. QFESTA [NO24] primes (p398, p592 and p783). Both p381 and p398 offer
128-bits security, while p575 and p592 offer 192-bits security, and p765 and p783 offer
256-bits security. For these six primes, the performance was measured in CPU cycles,
having an improvement of 35,60% for 128-bits, 31.62% for 192-bits, and 26.41% for 256-bits,
respectively.

Figure 15: Manuscript's Figure 4.

Reproducing Manuscript's Graphics: Figure 5 (1/5)

Simply execute
> cd reproduce_results/manuscript_figure 05
» chmod +x generate figure 05.sh
> ./generate_figure 05.sh

Reproducing Manuscript's Graphics: Figure 5 (2/5)

» The previous commands will (automatically) generate some
folders.

» You can delete these (automatically-generated) folders
between each run if necessary.

manuscript_figure_ 05 LD
— dCTIDH benchmarks_output # <= AUTOMATICALLY GENERATED!
— dCTIDH builds # <= AUTOMATICALLY GENERATED!
— statistics_output # == AUTOMATICALLY GENERATED!
|| analyze_bench.py
|| benchmark_graph_5.py
—_ generate figure 05.sh # <= NEED TO EXECUTE

Figure 16: Automatically-generated folders.

Reproducing Manuscript's Graphics: Figure 5 (3/5

vomc T feeprodoce £

1358

Figure 17: Generation script for Figure 5.

Reproducing Manuscript's Graphics: Figure 5 (4/5)

: Deckionlorsiects deyoacenincering s o L uprodece resksim

TS far SEAS-of TG arT ACTIOH e, ACTIOH Medifiod using our Fropasal (Keygen + Danvs

CPU Cycles

Figure 18: Generated statistical results from generate_figure_ 05.sh

Reproducing Manuscript's Graphics: Figure 5 (5/5)

PV e

(@)

(b)

Figure 5: Benchmarks for state-of-the-art dCTIDH vs. dCTIDH modified using our proposal.
Both the key generation (keygen) and the shared key derivation (derive) were tested. From

Figure 19: Manuscript's Figure 5.

Generating Technical Documentation (1/2)

We use Doxygen to generate the technical documentation.
» Configuration file: Doxyfile

> To generate, simply execute:

> cd docs
» doxygen Doxyfile

» Output in docs/html/index.html

Public link:
https://crypto-tii.github.io/pqc-engineering-ssec-23/

https://crypto-tii.github.io/pqc-engineering-ssec-23/

Generating Technical Documentation (2/2

MsinPage Namemaces . e Sructures.
[
Fiss
Flls L
Fep-sngnarr a5
oente
e—

perameters
i nasne
egLnamnn

aen

o
s
oTioH
gt
Gotals

£) paoengnesingsuec?s | coste | o

F

Refarences fp2_add, fp2_copy, fp2_half(), fp2_linear_pass_ing), fp2_mul, fp2_mul_by. 1620000, fp2_mul_by_25321820), fp2_mul by _2976),
p2_mul_by 3240000, fp2_mul_by_ 5452055000, fp2_mul_by 87450000000, fp2_neg, fp2 sat_to_one(). fp2_sqr, fp2_sqrt_fast(), fp2_sub, |
and)

Fatarencad by egl |

sh_digest 20)

Here s the call gragh for this function:

112 west_pues_in |

152_mul_by_T2400
f42_mud_by_sana
o PR by

e |

152_roul_by 5208500

-
| by 1500

tp2_ms_y_ ks

~
52_mud oy _B7 5000000 Loz
[iseirnons | []
=
. -
[[2_san_tas | = constane_time_sonditional_mor
isogerry valks 2 e o] 1 160

Figure 20: Technical documentation generated using Doxygen.

Cl/CD Overview (1/3)

In order to show that our project can be integrated in a Real-World
industrial environment, we provide a ClI/CD pipeline.

» We use GitHub Actions for CI/CD.

» Pipeline includes Build, Test, Benchmark, and Reporting
stages.

> YAML config:
.github/workflows/cmake-multi-platform.yml

Cl/CD Overview (2/3)

pgc-engineering-ssec-23

O—’—’_E

CMAKE CTEST DOXYGEN
|

) GitHub Actions

Build l
1
e Test - aul I
1

Benchmarking
1

Reporting

Figure 21: Designed CI/CD pipeline with Build, Test, Benchmarking,
and Reporting stages.

Cl/CD Overview (3/3)

cmake-multi-platform.yml|
on: push

Figure 22: Pipeline in action, running with GitHub actions.

Cl Stage: Build

» Triggers on push and pull request
» Any linux (Ubuntu example), Intel x86_64 CPU.
» Uses CMake caching for speed.

Cl Stage: Test

» Runs unit and integration tests
> Stores artifacts for future analysis

» Automatic failure reports

Cl Stage: Benchmark

» Executes performance benchmarks in both CPU cycles and
execution nanoseconds.

» Benchmarking for every proposed prime.

Cl Stage: Reporting (1/2)

» All the scripts used to reproduce our results reported in the
manuscript are tested.

> The generated statistical data and the generated graphs are
uploaded as public artifacts in our GitHub pipeline so they can
be used freely.

» This allows collaborators, scientists, and anyone in general to
reproduce, validate, and expand our research project.

Cl Stage: Reporting (2/2)

S| ¢
| @ summary

© buidores g i
@ et pime 254 Cyces)
© Testprime 255 () o s oo
© Testprime 381 () © benchmarts suc smi S S———— oo
°
© Testprime 358 e © benchmarts secs25-output sezapes N S N —— .6
© Testprime i1 Gy
PO @ benchmrks sec 255wt sszopes S .o
© Testprimes52 (e Y Te— 961 oes D —— = O
© Testprime 765 ()
© Tt pme 783) [y e T—— sezbpes O o
© enchmark e 254 Gk
& Becen e 25 © benchmarts secp39-cutput seospes S ————— s

Senchmark pime 361 Cycs)
° " e —— seabpe R ———— .o
© Benchmark prme 38 G
° @ sesomes -
© Bechmar prime 51 e
° ® s sTospes [o
© Benchmar prime 52 G
© b 6 e @ benchmarts sec 765 autput Ere S ——————— o0
© e e 18 G YT —————— mepes T o0
© rergesann
° © 1920 U .o
© Repor g 04 M)
Py © gerered foure 03 560 SO TS) .t
nc yne—— nra R ot
& vasge
Py— @ omerned-fgure05 240 P .t

@ reprodoce-ress-code e R ——))

Figure 23: Publicly available artifacts.

Docker Container

Simply execute

> docker pull
tiicrc/github-selfhosted-runner-pqc:latest

> docker images | grep pqc

Docker Container (2/2)

To mount, first locate your terminal at the artifact’s root folder
(pgc-engineering-ssec-23) and execute

» docker run --rm -ti -v $PWD:/src -w /src
tiicrc/github-selfhosted-runner-pqc:latest bash

After mounting, the terminal will change to

» /src# <insert commands here>

Industrial Readiness Proof-of-Concept

» Simulates real deployment environments

» Documented logs, errors, and benchmarking outputs

Additional Resources: CPU benchmarking

» Included details on how to:
» Turn off turbo-boost.
» Assembly instructions used in our benchmarking.
» Automated benchmarking scripts under
high-level-scripts/benchmark 02_20250408.sh

License and Contributions

» Open-source under Apache License.
» License guidelines in LICENSE file.

» Issues and PRs welcome!

About the Authors

» Jests-Javier Chi-Dominguez,
» Eduardo Ochoa-Jiménez,
» Ricardo-Neftali Pontaza-Rodas.

Thank you

LET US WALK ON
THE 3-ISOGENY GRAPH:
EFFICIENT, FAST, AND SIMPLE

\\/ \
P
THANK YOU

Thank you

Thank you!

	Repository Overview
	System Requirements
	How to Install and How to Build?
	How to Run Tests?
	How to Benchmark?
	Reproducing Manuscript's Graphics
	Generating Technical Documentation
	CI/CD Pipeline Overview
	How to download our Docker Container? (1/2)
	Additional Resources: CPU benchmarking
	License and Contributions

